
Static Analysis Project: A Research
Report by Kevin Kelly

Table of Contents

What is Static Analysis?...2

Existing Tools...3

PEs, ELFs, and the Linux Technology Stack..7

Executable and Linkable Files (ELFs)...7

Portable Executable Files (PEs)...10

Linux Shared Object Files (SO)..12

Dynamic-Link Libraries (DLLs)...13

Deciding the Best Language...14

Python... 14

Java.. 16

C++.. 17

Conclusion...17

Libraries with Java...18

Deciding the Best GUI Toolkit...19

Java Swing/SwingX..20

Java AWT...22

JavaFX.. 24

Conclusion...25

Conclusion..26

References...27

What is Static Analysis?
Static Analysis, as defined by NIST’s Computer Security Resource
Center, is “Detecting software vulnerabilities by examining the app
source code and binary and attempting to reason over all possible
behaviors that might arise at runtime. [CITATION Nis21 \l 6153]” It is a
means of dissecting a file’s contents, examining its workings to
determine if the file is potentially malicious. Unlike its counterpart,

1

dynamic analysis, static analysis conducts its investigation without
executing the instructions provided by the code. The earliest known
tool for Static Analysis was Lint, invented by Stephen C. Johnson in the
1970s [CITATION Owl12 \l 6153]

The features that a Static Analysis Tool tends to provide are as follows:

 Disassembler: A disassembler can be used to take an
executable file’s machine and reverse the assembly process to
transform it into readable assembly language code. This can be
used by the user to determine the file’s purpose and if it can
potentially cause harm to the system.

 Detect Strings: As part of the disassembler process, Static
Analysis detects strings that are found in the code. This can
provide very useful clues in determining the meaning behind the
code. For example, if a tool detects the strings “FindFirstFile” and
“FindNextFile”, these could mean the malware is “ransomware”. A
tool detects Strings by searching for patterns of contiguous
printable ASCII characters that end with a null character.

 Find Imports: A subset of Detecting Strings, strings ending in
".dll" on Windows or ".so" in Linux are compiled libraries that the
file is importing to make use of its functions. These libraries can
be checked against a lookup table to determine what the
malware is making use of to achieve its objective. For example,
“wininet.dll” is an API that allows a program to interact with HTTP
and FTP protocols [CITATION Mic20 \l 6153]. If a static analysis
tool finds this imported in the program, it can be determined it
has network functionality.

 Measure Entropy: Entropy in the context of programming is a
measure of a file’s randomness. Creators of malicious programs
attempt to disguise the danger of their work by encrypting or
compressing their code, thus introducing entropy [CITATION
Whi19 \l 6153]. By measuring a file’s entropy, an analysist can
detect suspicious sections of the code that must be decrypted or
examined to determine the meaning behind it. A file’s entropy
can range from 0, not random, to 8, completely random. A file’s
entropy is determined by the variability of bits per byte.

2

Existing Tools
There are several tools available on the Internet that can perform static
analysis. By examining their features and their limitations, useful
information can be gleaned from this research that can dictate the
working of the project.

Hacker’s View (Hiew)

Advantages Disadvantages
Boasts several useful features
such as x86-64 disassembler,
built in 64bit decrypt and block
operations

Not all features are available for
free, with some locked behind a
payment

A popular tool used by many,
meaning tutorials and
documentation of other’s use of it
is plentiful

Simple and basic GUI, meaning it
can be difficult to use for some

Available in both English and
Russian

Is currently only available on
Windows Operating Systems

PEview

Advantages Disadvantages
A tool dedicated to analyzing files Can only be used regarding

3

in the Portable Executable (PE)
that many malwares make use of

Windows, does not offer support
for the Linux equivalent to PEs,
Executable and Linkable Files
(ELF)

It is a lightweight program,
making it suitable for systems
with limited resource availability
Is free and easy to use, making it
suitable for beginners

Light in features, meaning it
cannot perform in-depth analysis

PEiD

4

Advantages Disadvantages
Specializes in detecting if a PE file
has been packed/compressed, as
well as detecting how it was
compiled

Does not offer support in static
analysis beyond detection of
compliment and packing

Is available in full for free The website where it was
originally hosted was
discontinued, must be
downloaded via a third-party site

From examining existing tools on the market, several issues arise:

 The tools available may not be beginner friendly or difficult to
use, for the GUI tends to be basic

 Each tool seems to specialize in one aspect of static analysis. For
example, Hiew is used as a disassembler while PEiD is used for
examining compression. There isn’t a “one size fits all” tool
available.

 The tools available appear to prioritize working on Windows
Operating Systems. Linux appears to be often regarded as
secondary or an afterthought.

From this, I can determine the objectives I wish my static analysis tool
can achieve:

A static analysis tool that is executable on both Linux and Windows,
supports a multitude of features that are critical in static analysis,
including disassembler to assembly and pseudo-code, examination of

5

PE and ELF files and detection of compression or packing, all presented
in an attractive, easy-to-use GUI.

A tool that I consider to be the paragon of what I aspire the project to
achieve is the tool IDA. IDA is a static analysis tool that can perform
disassembly on binary files to assembly language, but does so in a
clear, easy-to-read GUI.

The

screenshot showcases IDA being used on a simple C program that
consists of a for loop. From the GUI, we can see through the arrows
where the for loop begins, what occurs if the loop is true or false (green
and red arrows respectively) and where the loop returns to it’s
beginning.

IDA also allows the user to rename variables found in the assembly to
help understand what is occurring in the code. IDA’s well-made GUI
makes understanding assembly, something many can find daunting, a
much easier process, and I hope to achieve a similar presentation and
GUI in my project as well.

6

PEs, ELFs, and the Linux Technology
Stack
A mandatory requirement of this project is a static analysis tool that is
operable on Linux. Therefore, an understanding of the Linux
Technology Stack and how it handles files and malware is critical in the
success of this project.

Executable and Linkable Files (ELFs)
ELF is a popular file format in Linux that is used for binary files, shared
libraries, core dumps etc. A ELF consists of the following format:

 An ELF Header
 Zero or more Segments
 Zero or more Sections

A Segment in an ELF is used during runtime, while a Section is relevant
during link time. An ELF format can be read in Linux using the readelf
CLI command [CITATION You20 \l 6153].

ELF files in it’s Header, Segments and Sections uses it’s own Data
Types, specified as possible:

 HalfWord: 8-bit unsigned integer
 Word: 16-bit unsigned integer
 Address: Specifies addresses in memory. Can be 32-bit or 64-bit
 Offset: Specifies offsets in memory. Can be 32-bit or 64-bit

An ELF Header contains the metadata of the file, such as type of file,
machine type, the offsets in memory of where the Program Headers
and Section Headers, detailing the file’s Segments and Sections
respectively, as well as entries detailing the number of headers and
their sizes.

At the beginning of the ELF file is the “EI_NIDENT” a series of 16 bytes
that specify how the file is to be parsed. The beginning of EI_NIDENT of
an ELF file always begins with the hex value 7F followed by 45, 4C, and
46, ASCII encoding of E, L, and F respectively. This is done to specify
the file is an ELF file.

The following is the output of the ELF header of the Linux “ls”
command, using readelf –h /bin/ls:

7

As stated previously, Program Headers specify the Segments of the ELF
file. They are located together in an array in the ELF file.

Program Headers will define the follow characteristics of it’s respective
Segment:

 Type of Segment
 Where the Segment is located in the ELF file
 It’s Virtual and Physical Addresses
 The segment’s permissions (Read, Write, Execute)

Below is a screenshot of the segments of the Linux ls command,
obtained using the command readelf --segments /bin/ls

There are three main Segments in an ELF File

8

 Code Segment: Contains all code
 Data Segment: Contains all data
 Stack Segment: Memory Enclosing Stack

Similar to Segments, Sections are defined by Section Headers, whose
location in the ELF file and quantity can be found in the ELF header.

A Section Header defines the following characteristics of a Section:

 Section Name (Not a string, but rather an offset into the Section
Header String table, a series of bytes that are terminated by a
null byte)

 Type of Section
 Flags (3 Types: SHF_WRITE determines that is a segment is

created from this section, it should be writable. SHF_ALLOC
determines that this Section should be loaded into memory, and
SHF_EXECINSTR determines the section contains executable
code)

 Location and size of the Section in the ELF file
 Specifications if the Section has any alignment constraints
 Any additional/miscellaneous information

Common Sections seen in the ELF file include:

 .text: Contains code
 .data: Where global variables and tables exist
 .bss: Contains uninitialized variables and array

Portable Executable Files (PEs)
Portable Executables is a common file format seen in Windows. It is the
most common format for Windows Executables but is also seen in
object code and Dynamic Link Libraries (DLLs). Static analysis tools
such as the previously discussed PEView and PEiD are dedicated to
analyzing PEs.

The structure of a PE file is as follows:

 MS-DOS Header: This is the same header present in the MS-
DOS Operating System since Version 2. This is present so that, if
an incompatible file is read by the Operating System, it can print
out the string “This program cannot be run in DOS mode”. The
MS-DOS Header is in the first 64 bytes of the PE file. Without the

9

MS-DOS Header as the first part of the PE file, the Operating
System will fail to load the file into memory.

 DOS Stub: This contains the string that the program cannot be
run in DOS mode.

 PE Header: Using the structure type IMAGE_NT_HEADER, the PE
Header consists of three main components:

o Signature: A four byte signature that is used to showcase
that this file is a PE. In a PE file, this is the values 50 and 45,
P and E in hex respectively, followed by two null bytes.

o IMAGE_FILE_HEADER: Consists of 20 bytes that details
basic information about the PE file such as the number of
sections the PE file contains and the type of architecture it
was programmed for.

o IMAGE_OPTIONAL_HEADER: Contains far more important
and detailed information about the PE file in comparison to
the IMAGE_FILE_HEADER. It consists of 224 bytes.

The information regarding the PE file found in the
IMAGE_OPTONAL_HEADER includes:

 Magic: Field that informs the OS that this executable is intended
for either 32-bit or 64-bit systems, represented by the hex values
0x10b and 0x20b respectively.

 AddressOfEntryPoint: Indicates the location of the entry point
for the application, as well as the location of the end of the PE
file’s Import Address Table (IAT), a table consisting of the DLLs the
PE file uses to achieve it’s purpose.

 BaseOfCode: Pointer to the beginning of the file’s code.
 BaseOfData: Pointer to the beginning of the file’s data section.
 DllCharacteristics: Contains properties of the DLLs used in

conjunction with the PE file.
 SizeofImage: States how much space in memory to be reserved

for the loaded executable file image.
 SizeofHeaders: Indicates how much space is used by the MS-

DOS Header, IMAGE_FILE_HEADER, IMAGE_OPTIONAL_HEADER
and Section Headers.

 CheckSum: A value used to verify the validity of the executable
at load time.

10

As with ELFs, PE files contain Sections, which are loaded sequentially
into memory. PE Sections have Section Headers that describes the
properties of it’s respective Section, including:

 Name
 Physical and Virtual Addresses
 Size and Pointer to Raw Data

Common Sections include:

 .text: Contains executable code
 .data: Contains initialized data
 .bss: Contains uninitialized data
 .rdata: Lists the Windows API and DLLs used by the PE file.

Linux Shared Object Files (SO)
A Shared Object (SO) File is a compiled library that is equivalent to a
Windows Dynamic Link Library (DLL). It provides functionality to an
executable. As mentioned previously, imports from libraries are a key
factor in static analysis in determining a malware’s purpose (for
example, importing a library that can operate with HTTP protocols
reveals the malware has network functionality). As this project’s
objective is to create a static analysis tool for Linux, an understanding
of SO files is crucial to success. A SO file follows the file format of a ELF
file.

SO files are dynamically loaded upon run time [CITATION Kno17 \l
6153], and the naming convention for said files begins with “lib” and
end with the “.so” extension.

Standard SO libraries are typically found in the “/usr” or “/usr/lib”
directories on a Linux system. When a program is loaded, the dynamic
link loader first checks the environmental variable LD_LIBRARY_PATH,
which specifies one or more paths to directories to search for the
libraries required for the application to run successfully. This is
searched before checking for any path specified in the ELF header of
the application or in the standard libraries. This can prove to be a
security risk. If the LD_LIBRARY_PATH variable is changed, it can be
used to load malicious or dangerous code upon attempting to execute
a program [CITATION DCC21 \l 6153].

11

Dynamic-Link Libraries (DLLs)
Dynamic-Link Libraries are the Windows equivalent to Linux Shared
Object Files. They are modules containing functions and data designed
to be used by other applications to achieve their purpose, and
analyzing what DLLs are imported by a program provides especially
useful clues in static analysis in determining the program’s purpose.

DLLs define two types of functions: internal functions that are meant to
be called by the DLL they are defined in, and external functions
designed to be called by other applications and DLLs [CITATION
Mic21 \l 6153]

When a program wishes to make use of a function in a DLL, there are
two methods of calling it:

 In load-time dynamic linking, the program makes use of an import
library, containing the information on where the systems’ DLLs
are located, to find the needed DLL and it’s functions to call as if
they originate from the application.

 In run-time dynamic linking, the program calls the function
“LoadLibrary” or “LoadLibraryEx”, functions that load the
specified DLL into the specified address space in memory,
followed by the function “GetProcAddress” which obtains the
memory addresses of the required functions [CITATION Mic211 \l
6153].

Deciding the Best Language
In any undertaking involving programming, choosing what
programming language to create the project is in is a vital decision,
akin to choosing the best tools for a construction project.

In my situation, a project to create a static analysis tool, the following
factors will dictate my choice:

 What experience do I have with the language? Am I comfortable
in my knowledge of it to implement my project in?

 What libraries are available that can assist me in fulfilling the
mandatory requirements of the project? Are these libraries
available for free or at a cost?

12

 What options does the language have in terms of creating GUIs?
One of my goals for this project is to make the tool user-friendly,
so an easy-to-use and understand GUI is essential.

 Is the language portable? Can it operate on multiple architectures
or Operating Systems (e.g. across Windows and Linux)

The following chapter will be research into potential candidates for the
chosen language, its advantages and disadvantages, and my
reasoning for my chosen language.

Python
Python, as defined by the “Python.org” website, is an “interpreted,
object-oriented, high-level programming language with dynamic
semantics [CITATION Pyt21 \l 6153].” It is a popular choice for
programmers with a focus on readability and ease-of-use.

Advantages of Python

 With prioritization on readability, dynamic semantics and a
syntax based on the English language, Python is an easy-to-use,
easy-to-understand language. Combined with the fact I have
undergone a Python training course, as well as real-world
experience with the language in my work placement, I am
confident with the idea of programming the project in Python.

 It is a portable language, operable across Windows and Linux
[CITATION W3S21 \l 6153].

 Python offers great support for installing libraries. PIP is a tool in
Python that can be used to install packages from the Python
Package Index. Packages contain the code required for a module,
which consists of Python libraries [CITATION W3S211 \l 6153].
This means I can easily install libraries to assist me in my project.

 There are several Python GUI frameworks available, such as
PySimpleGUI, Wax, and Tkinter [CITATION Tow20 \l 6153]. This
offers a great amount of choice in deciding how I wish to design
the project’s GUI.

Disadvantages of Python

 Python is an interpreted language. While this offers its
advantages, a particular fault with this setup is that it means

13

Python is slower in comparison to compiled languages such as
Java [CITATION Gee21 \l 6153].

 Python is a high-level language, it does not work closely with the
hardware. Static analysis is a low-level subject as one of the key
components of it is to disassemble machine code into assembly
language. This contrast can be a source of problems when
implementing the project.

Java
Java is defined as a “general-purpose, class-based, object-oriented
programming language designed for having lesser implementation
dependencies. [CITATION Gur21 \l 6153]”.It is a programming
language built off C# and C++.

Advantages of Java

 Java is the programming language I have the most experience in.
Therefore, it is the language I am most comfortable with.

 Java can operate on multiple platforms, including Windows and
Linux.

 Java is a compiled language. This means it can have greater
speed in comparison to Python, an interpreted language.

 Swing is a toolkit used to design GUIs in Java. It is a toolkit I have
great experience, using it to implement GUIs for previous
projects.

Disadvantages of Java

 Java, unlike Python, does not have a focus on readability or
syntax based on the English language. This can result in a more
difficult process in implementing my vision of the project in Java,
resulting in slower progress.

 Java is a slower language in comparison to it’s C#/C++
counterparts.

 Due to Java programs running on the Java Virtual Machine,
meaning it can consume a higher-than-average amount of
memory. This can clash with one of the end goals of the project:
to create a market-releasable project. Higher memory usage
means users with lower-end systems may not be able to use the
tool (for example, a malware analyst may wish to use this tool to

14

analyze a file on an old test computer but is unable to due to the
memory requirements).

C++
C++ is an objected-oriented language that is a superset of the C
language. C++ alongside C now are considered low-level languages in
comparison to modern standards [CITATION Cou20 \l 6153]

Advantages of C++

 C++ is a low-level language, meaning it operates closely with the
hardware. This can prove to be useful in this project, as one of
the components of static analysis, disassembly, is the act of
converting machine code into low-level assembly language.

 C++ is operable on both Windows and Linux.

Disadvantages of C++

 While I do have experience with C++, it pales in comparison to
the other previously mentioned languages. Therefore, I do not
consider myself comfortable in my knowledge of the language.

 C++ is an older language compared to Python and Java.
Therefore, it does not contain the more modern conveniences or
readability that many have come to expect. Therefore, it can be a
difficult language to implement the project in.

 I have little experience in working with GUIs in C++, what I have
done using C++ GUIs have been simple diagrams that I found
difficult to program. Therefore, I do not see C++ as a viable
option for designing an easy-to-use GUI.

Conclusion
Taking each language’s advantages and disadvantages into account, I
have decided that Java will be the language I will use to code this
project. It is the language I have the most experience in out of the
languages I researched, it contains an extensive number of libraries

15

that can help me in implementing the necessary criteria, and I have
experience creating GUIs in Java for previous projects.

Libraries with Java
Libraries are an essential aspect in implementing the project. They
provide the code needed to add important features to the project to
fulfill essential criteria.

Libraries that can be used to help implement the project include:

 Capstone: A lightweight, open source API that is used for file
disassembly. File disassembly plays a large part in static analysis
so a library to help incorporate this into my project would be
incredibly useful. Reasons as to why Capstone would be
appropriate for my project is that it is lightweight, architecture-
neutral, and supported on Windows and Linux, helping to fulfill
the criteria that the project operates on both platforms.
Additionally, it is suited for malware analysis, able to detect
actions preformed by malware in x86 architecture [CITATION
Cap20 \l 6153].

 Bayes Server: Bayes Server provides APIs and Libraries for AI
and statistics in several languages, including Java. One of the
tools provided by the API allows the program to measure entropy.
Bayes Server’s technology is used by many companies including
Mitsubishi, HP and the Australian and Canadian Government,
making me confident in using their work to develop my project
[CITATION Bay21 \l 6153]. Additionally, documentation of their
API is present, which will be useful if I come across a roadblock
when using it.

Deciding the Best GUI Toolkit
One of my goals for this project is to create an easy-to-use GUI that
presents information to the user in a clear, understandable format,
thus avoiding the user from becoming confused or frustrated.
Therefore, what GUI Toolkit I decide to implement the GUI in is an
important decision. Java provides several Toolkits to utilize in creating
GUIs. The following chapter will be discussing the potential choices for

16

the Toolkit, and reaching my conclusion at the end. Each Toolkit
discussed will be paired with a screenshot of a simple GUI containing a
button built using said Toolkit.

Java Swing/SwingX

Java Swing is a GUI Toolkit that’s part of the Java Foundation Classes
that is used to design window-based applications. GUIs designed in
Swing consist of a collection of Swing components, from simple
components such as buttons (JButton) and labels (JLabels) to more

17

complex examples such as Tabbed Panes (JTabbedPane) [CITATION
Sec21 \l 6153].

Advantages of Swing

 Java Swing is the GUI Toolkit I have the most experience with. I
used it to implement projects in the past and find it easy to use
and flexible.

 Swing components are lightweight. They leave a small impact on
the systems’ memory.

 Swing is platform-independent. Its components stay relatively the
same from one machine to another. This is essential in the project
criteria of having it be cross-platform [CITATION Sec21 \l 6153].

Disadvantages of Swing

 All of Swings components are drawn. This can result in a slower
program in comparison to Toolkits such as AWT.

 It may require a separate JAR file in order to be functional
[CITATION Sha19 \l 6153].

18

Java AWT

Java AWT or Abstract Window Toolkit is an early GUI Toolkit in Java.
Similarly to Swing, it is used to design window-based applications. The
AWT package provides classes to create a GUI, such as Label, TextArea
and List [CITATION Jav21 \l 6153].

Advantages of AWT

19

 It is a stable toolkit that will rarely result in crashes. This can be
useful in the context of static analysis when handling sensitive or
malicious files.

 AWT components are implemented locally by the Operating
System. This means the majority of the code is loaded as the
system starts, resulting in fewer startup events.

Disadvantages of AWT

 AWT is a Toolkit I do not have much experience with, meaning I
would have trouble implementing my intended vision of the
project using it.

 AWT is platform dependent, it’s components can change from
machine to machine. This can cause issues when attempting to
make my project able to run on both Windows and Linux.

 In comparison to Swing, AWT does not contain as many
components to create a GUI. This makes it a less flexible Toolkit
to create a project in.

JavaFX

[CITATION Ora14 \l 6153]

20

[CITATION Ora14 \l 6153]

JavaFX is “an open source, next generation client application platform
for desktop, mobile and embedded systems built on Java”. Not only
can it be used for developing web applications, but also web
applications to be run across multiple devices, such as Desktop and
Mobile.

Advantages of JavaFX

 The components that make up a JavaFX can be styled using CSS,
a language I have experience with. This means I would have
greater flexibility in how the GUI is designed compared to other
options.

 JavaFX provides a high number of graphical effects and
animations when designing a GUI. These could prove to be useful
when aiming for my goal of an easy-to-use GUI (For example,
using animations to help guide the user and point out important
aspects of the disassembled file)

Disadvantages of JavaFX

21

 The startup time for an application using JavaFX is long,
especially in comparison to Swing.

 I do not have any prior experience with JavaFX. I would have to
learn the Toolkit before I can use it for the implementation of the
project, which will take time away from designing the project
optimally.

Conclusion
Considering the options available, I’ve decided I will use Swing/SwingX
to create the GUI for the project. It is the Toolkit I have the most
experience with, therefore it is a tool I am comfortable with.
Additionally, it provides several powerful components that will help
fulfill my goal of designing a easy-to-use GUI.

22

Conclusion
In order to implement this project, I will:

 Create a Static Analysis Tool for Linux. This tool must be able to
disassemble files, measure entropy, find what libraries are
imported, and detect Strings. This is all done to allow the user to
determine the functionality and potential impact of a file without
executing it.

 Code the project using the Java Programming Language
 Incorporate the GUI using the Java Swing/SwingX GUI Toolkit
 Focus on ensuring the tool is easy to understand and use

This report has been essential in broadening my understanding
regarding Static Analysis, the Linux Technology Stacks, and the choices
a person would consider when deciding a programming language. The
knowledge accumulated will be invaluable in ensuring my project is
well-implemented and a success.

23

References

Bayes Server, 2021. Bayes Server. [Online]
Available at: https://www.bayesserver.com/
[Accessed 17 November 2021].

Capstone, 2020. Capstone The Ultimate Disassembler. [Online]
Available at: https://www.capstone-engine.org/
[Accessed 17 November 2021].

CourseReport, 2020. A Guide to Low Level Programming for Beginners. [Online]
Available at: https://www.coursereport.com/blog/a-guide-to-low-level-programming-
for-beginners
[Accessed 3 November 2021].

DCC Computing Center, 2021. LD_LIBRARY_PATH - or: How to get yourself into
trouble!. [Online]
Available at: https://www.hpc.dtu.dk/?page_id=1180
[Accessed 3 November 2021].

GeeksForGeeks, 2021. Disadvantages of Python. [Online]
Available at: https://www.geeksforgeeks.org/disadvantages-of-python/
[Accessed 3 November 2021].

Guru99, 2021. What is Java? Definition, Meaning & Features of Java Platforms.
[Online]
Available at: https://www.guru99.com/java-platform.html
[Accessed 3 November 2021].

JavaTPoint, 2021. Java AWT Tutorial. [Online]
Available at: https://www.javatpoint.com/java-awt
[Accessed 8 November 2021].

Knowledge, 2017. What is the Difference Between .so and .a files in Linux. [Online]
Available at: https://knowledge.ni.com/KnowledgeArticleDetails?
id=kA00Z000000P8svSAC
[Accessed 3 November 2021].

Microsoft, 2020. About WinINet. [Online]
Available at: https://docs.microsoft.com/en-us/windows/win32/wininet/about-wininet
[Accessed 3 November 2021].

Microsoft, 2021. About Dynamic-Link Libraries. [Online]
Available at: https://docs.microsoft.com/en-us/windows/win32/dlls/about-dynamic-
link-libraries
[Accessed 3 November 2021].

24

Microsoft, 2021. Dynamic-Link Libraries (Dynamic-Link Libraries). [Online]
Available at: https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-
libraries
[Accessed 3 November 2021].

NIST, 2021. Static Analysis. [Online]
Available at: https://csrc.nist.gov/glossary/term/static_analysis
[Accessed 3 November 2021].

Oracle, 2014. Hello World, JavaFX Style. [Online]
Available at: https://docs.oracle.com/javase/8/javafx/get-started-
tutorial/hello_world.htm
[Accessed 17 November 2021].

Owlapps, 2012. Lint (software). [Online]
Available at: http://www.owlapps.net/owlapps_apps/articles?id=18692&lang=en
[Accessed 3 November 2021].

Python, 2021. What is Python? Executive Summary. [Online]
Available at: https://www.python.org/doc/essays/blurb/
[Accessed 3 November 2021].

Section, 2021. Introduction to Java Swing. [Online]
Available at: https://www.section.io/engineering-education/introduction-to-java-
swing/#differences-between-java-swing-and-java-awt
[Accessed 8 November 2021].

Sharma, S., 2019. Introduction To Swing in Java. [Online]
Available at: https://www.c-sharpcorner.com/UploadFile/fd0172/introduction-of-
swing-in-java/
[Accessed 8 November 2021].

Towards Data Science, 2020. Top 10 Python GUI Frameworks for Developers.
[Online]
Available at: https://towardsdatascience.com/top-10-python-gui-frameworks-for-
developers-adca32fbe6fc
[Accessed 3 November 2021].

W3Schools, 2021. Introduction to Python. [Online]
Available at: https://www.w3schools.com/python/python_intro.asp
[Accessed 3 November 2021].

W3Schools, 2021. Python PIP. [Online]
Available at: https://www.w3schools.com/python/python_pip.asp
[Accessed 3 November 2021].

Whiteheart, 2019. Entropy Analysis: A critical test for malware's. [Online]
Available at: https://whiteheart0.medium.com/entropy-analysis-a-critical-test-for-
malwares-69939f5b8b1
[Accessed 3 November 2021].

25

YouTube, 2020. In-depth ELF - The Extensible & Linkable Format. [Online]
Available at: https://www.youtube.com/watch?v=nC1U1LJQL8o
[Accessed 3 November 2021].

26

	What is Static Analysis?
	Existing Tools
	PEs, ELFs, and the Linux Technology Stack
	Executable and Linkable Files (ELFs)
	Portable Executable Files (PEs)
	Linux Shared Object Files (SO)
	Dynamic-Link Libraries (DLLs)

	Deciding the Best Language
	Python
	Java
	C++
	Conclusion
	Libraries with Java

	Deciding the Best GUI Toolkit
	Java Swing/SwingX
	Java AWT
	JavaFX
	Conclusion

	Conclusion
	References

